FY 2022 Enrollment:110; Graduates: 39 # Bachelor of Science in Information Technology ### **Program Educational Objectives** Program Educational Objectives (PEOs) are broad statements that describe what graduates are expected to attain within a few years of graduation. Program Educational Objectives are based on the needs of the program's constituencies. PEO 1: Apply general and discipline-specific concepts and methodologies to identify, analyze, and solve technical problems in the information technology discipline. PEO 2: Demonstrate an individual desire and commitment to remain technically current with, and adaptive to, changing technologies through continuous learning and self-improvement. PEO 3: Demonstrate independent thinking, function effectively in team-oriented settings, and maintain a high level of performance in a professional/industrial environment. PEO 4: Communicate effectively in a professional/industrial environment. PEO 5: Perform ethically and professionally in business, industry and society. PEO 6: Demonstrate and utilize leadership principles in the field of information technology. #### **Program / Student Learning Outcomes: What Will I Learn?** Select an outcome statement to see the related measures and results. Graduates of the Bachelor of Science in Information Technology will be able to: - 1. Analyze a complex computing problem and apply principles of computing and other relevant disciplines to identify solutions. - 2. Design, implement, and evaluate a computing based solution to meet a given set of computing requirements in the context of information technology. - 3. Communicate effectively in a variety of professional contexts. - 4. Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles. - 5. Function effectively as a member or leader of a team engaged in activities appropriate to information technology. - 6. Identify and analyze user needs and to take them into account in the selection, creation, integration, evaluation, and administration of computing-based systems. - 7. Demonstrate expertise in the core information technologies including human-computer interaction, information management, programming, web systems and technologies, networking, system administration and maintenance, and system integration and architecture. - 8. Demonstrate the ability to analyze computing and information security requirements and risks, and apply the appropriate tools and techniques to protect organizational data assets in an ethically responsible manner. - 9. Demonstrate the ability to apply best practices and standards for providing technology-based solutions. - 10. Demonstrate the ability to identify and analyze the local, regional, and global impacts of information technologies and computing on individual, organizations, and society. 11. Demonstrate a commitment to professional development and continue to engage in lifelong learning. ### Assessment Methodology Metrics, Assessments, and Levels of Achievement The table below provides a brief overview of the measures selected to assess program outcomes for the Bachelor of Science in Information Technology program. Assessment of program outcomes includes both direct and indirect measures. Benchmarks have been established to differentiate between three levels of program outcome achievement (highly achieved, meets standard, and needs improvement). These three levels of achievement are color coded and used in the section below to indicate the level of achievement for each measure, for each learning outcome. | Metric
Type | Direct
Measures | | Indirect
Measures | | | |----------------------|---|---|--|--|--| | Assessments | Integrated
Technology
Assessment
Portfolio | Course-
Embedded | Exit
Alumni Survey | One-Year
Post-graduation
Alumni Survey | | | Metrics | The percentage of the IT 495 students who receive a satisfactory rating or higher on the given rubric criteria for the learning statements and supporting evidence for the related student outcome. | The percentage of the students who receive a grade of B or higher on two selected course embedded assessments that measure the related program outcome. | The mean of the graduates' perceptions of their achievement of the related program outcomes (on a 6-pt Likert-type scale). | The mean of the graduates' perceptions of their achievement of the related program outcomes (on a 6-pt Likert-type scale). | | | Highly
Achieved | ·
≥ 85% | | Mean ≥ 5.00 | | | | Meets
Standard | 70 - 84% | | 4.00 - 4.99 | | | | Needs
Improvement | < 70% | | Mean < 4.00 | | | Note: The results of the one-year post-graduation survey are used as a reference to provide a longitudinal perspective on students' attainment of program (student) outcomes. ## **Program (Student) Outcome Achievement Results** May 2021 Term through March 2022 Term | Program (Student) Outcome | | Direct Measure(s) | | | Indirect Measures | | |---------------------------|---|-------------------|--|---|-------------------|--------------------| | 1 | Analyze a complex computing problem and apply principles of | IT 495
M3A1 | TECH 205
M8A1
Final Exam | IT 380
M5A1
Hands-On Lab | Exit Survey | One-Year
Survey | | | computing and other relevant | 89% | 77% | 100% | * | * | | | disciplines to identify solutions. | n = 36 | n = 52 | n = 18 | | | | 2 | Design, implement, and evaluate a computing based solution to meet a given set of computing requirements in the context of information technology. | IT 495
M3A2 | IT 370
M5A1
Select and
Install DBMS | IT 375
M1.3
Good and Bad
Design | Exit Survey | One-Year
Survey | | | | 77% | 80% | 97% | * | * | | | | n = 30 | n = 20 | n = 34 | | | | 3 | Communicate effectively in a variety of professional contexts. | IT 495
M3A3 | IT 390
M8A1
Final Project
Report | IT 250
M1A2
Hands-on
Activity | Exit Survey | One-Year
Survey | | | | 81% | 100% | 84% | * | * | | | | n = 21 | n = 26 | n = 32 | | | | 4 | Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles. | IT 495
M4A1 | IT 380
M8A1
Hands-On Lab | IT 321
M8A1
Final Project
Milestone 4 | Exit Survey | One-Year
Survey | | | | 85% | 100% | 94% | * | * | | | | n = 20 | n = 18 | n = 18 | | | | 5 | Function effectively as a member or leader of a team engaged in activities appropriate to information technology. | IT 495
M4A2 | IT 390
M6A1
Project
Change
Requests | IT 390
M8A1
Final Project
Report | Exit Survey | One-Year
Survey | | | | 86% | 82% | 100% | * | * | | | | n = 22 | n = 28 | n = 26 | | | | 6 | Identify and analyze user needs and to take them into account in the selection, creation, integration, evaluation, and administration of computing-based systems. | IT 495
M4A3 | IT 375
M6.3
Applying
Shneiderman's
Eight Gold
Rules | IT 375
M4.3
Balsamiq –
Low Fidelity
Wireframing | Exit Survey | One-Year
Survey | | | | 78% | 97% | 90% | * | * | | Program (Student) Outcome | | Direct Measure(s) | | | Indirect Measures | | |---------------------------|---|--------------------------------------|---|---|-------------------|--------------------| | | | n = 23 | n = 31 | n = 29 | | | | 7 | Demonstrate expertise in the core information technologies including human-computer interaction, information management, programming, web systems and technologies, networking, system administration and maintenance, and system integration and architecture. | IT 495
M5A1 (Pt 1)
M5A1 (Pt 2) | IT 375
M5.1
Persona
Sharing | IT 380
M8A2
Research
Paper | Exit Survey | One-Year
Survey | | | | 95%
88% | 100% | 100% | * | * | | | | n = 20
n = 21 | n = 31 | n = 18 | | | | 8 | Demonstrate the ability to analyze computing and information security requirements and risks, and apply the appropriate tools and techniques to protect | IT 495
M5A2 | IT 370
M8A1
Create a GUI
Database App | IT 460
M8.3
System
Administration
Best Practices
Short Paper | Exit Survey | One-Year
Survey | | | organizational data assets in an | 93% | 81% | 100% | * | * | | | ethically responsible manner. | n = 29 | n = 21 | n = 8 | | | | 9 | Demonstrate the ability to apply best practices and standards for providing technology-based solutions. | IT 495
M6A1 | IT 321
M4A1
Pipelining
Stages and
Execution | IT 371
M7.4
Web Design
Project | Exit Survey | One-Year
Survey | | | | 86% | 100% | 100% | * | * | | | | n = 29 | n = 20 | n = 32 | | | | 10 | Demonstrate the ability to identify
and analyze the local, regional,
and global impacts of information
technologies and computing on
individual, organizations, and | IT 495
M6A2 | IT 250
M3A1
Securing
Business
Networks | IT 380
M1A1
Hands-On Lab | Exit Survey | One-Year
Survey | | | , , | 100% | 84% | 100% | * | * | | | society. | n = 24 | n = 31 | n = 29 | | | | 11 | Demonstrate a commitment to professional development and continue to engage in lifelong learning. | IT 495
M6A3 | IT 360
M1A1
OS Platforms | IT 375
M8.3
UX/UI Careers
Quiz | Exit Survey | One-Year
Survey | | | | 96% | 92% | 76% | * | * | | | | n = 26 | n = 13 | n = 34 | | | #### **Capstone Exam Results** A comprehensive capstone examination has been administered to all baccalaureate degree students at the conclusion of the IT 495 Integrated Technology Assessment since May 2011. The capstone examination consists of 120 objective questions that assess the most common and most important topics and skills in seven core content areas within the College's baccalaureate degree information technology curriculum. From May 2021 term through March 2022 term, the total number of students who took the capstone exam was 39. The mean score on each of the program's core content areas is shown below: - 90% Object Oriented Programming (Part 1) - 78% Object Oriented Programming (Part 2) - 100% Information Management - 97% System Administration & Maintenance - 100% Operating Systems & Computer Architecture - 90% Data Communications and Networking - 92% Web Systems and Technologies - 100% Human-Computer Interaction