Bachelor of Science in Nuclear Engineering Technology

Program Educational Objectives

Program Educational Objectives (PEOs) are broad statements that describe what graduates are expected to attain within a few years of graduation. Program Educational Objectives are based on the needs of the program’s constituencies.

PEO 1: Apply general and discipline-specific concepts and methodologies to identify, analyze and solve technical problems in the nuclear discipline, including understanding and addressing the societal and institutional issues related to nuclear technology.

PEO 2: Demonstrate an individual desire and commitment to remain technically current with, and adaptive to, changing technologies through continuous learning and self-improvement.

PEO 3: Demonstrate independent thinking, function effectively in team-oriented settings, and maintain a high level of performance in a professional/industrial environment.

PEO 4: Communicate effectively in a professional/industrial environment.

PEO 5: Perform ethically and professionally in business, industry and society.

PEO 6: Demonstrate and utilize leadership principles in the field of nuclear engineering technology.

Program / Student Learning Outcomes: What Will I Learn?

Select an outcome statement to see the related measures and results.

Graduates of the Bachelor of Science in Nuclear Engineering Technology will be able to:

1. Apply knowledge, techniques, skills and modern tools of mathematics, science, engineering, and technology to solve broadly-defined engineering problems appropriate to the nuclear engineering technology discipline.

2. Demonstrate an ability to design systems, components, or processes meeting specified needs for broadly-defined engineering problems appropriate to the nuclear engineering technology discipline.

3. Apply written, oral, and graphical communications in broadly-defined technical and non-technical environments; and be able to identify and use appropriate technical literature.

4. Conduct standard tests, measurements, and experiments, and be able to analyze and interpret the results to improve processes.

5. Function effectively as a member as well as a leader on technical teams, and apply project management techniques in team project activities.

6. Demonstrate comprehension of currently applicable rules and regulations in the areas of: radiation protection, operations, maintenance, quality control, quality assurance, and safety.

7. Demonstrate an understanding of and commitment to professional, ethical, and social responsibilities, including the impacts of culture, diversity, and interpersonal relations.
Assessment Methodology

The table below provides a brief overview of the measures selected to assess program outcomes for the Bachelor of Science in Nuclear Engineering Technology program. Assessment of program outcomes includes both direct and indirect measures. Benchmarks have been established to differentiate between three levels of program outcome achievement (highly achieved, meets standard, and needs improvement). These three levels of achievement are color coded and used in the section below to indicate the level of achievement for each measure, for each learning outcome.

<table>
<thead>
<tr>
<th>Metric Type</th>
<th>Direct Measures</th>
<th>Indirect Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessments</td>
<td>Capstone Course</td>
<td>Exit Alumni Survey</td>
</tr>
<tr>
<td></td>
<td>Course-E Embedded</td>
<td>One-Year Post-graduation Alumni Survey</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Direct Measure</th>
<th>Indirect Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessments</td>
<td>The percentage of the NUC 495 students who receive a rating of satisfactory or higher on the given rubric criteria, for the related student outcome.</td>
<td>The mean of the graduates' perceptions of their achievement of the related program outcomes (on a 6-pt Likert-type scale).</td>
</tr>
<tr>
<td></td>
<td>The percentage of the students who receive a grade of B or higher on two selected course embedded assessments.</td>
<td>The mean of the graduates' perceptions of their achievement of the related program outcomes (on a 6-pt Likert-type scale).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>Highly Achieved</th>
<th>Meets Standard</th>
<th>Needs Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥ 85%</td>
<td>70 - 84%</td>
<td>< 70%</td>
</tr>
<tr>
<td></td>
<td>Mean ≥ 5%</td>
<td>4.0 - 4.99</td>
<td>Mean < 4</td>
</tr>
</tbody>
</table>

Note: The results of the one year post-graduation survey are used as a reference to provide a longitudinal perspective on students’ attainment of program (student) outcomes.

Key:

- Highly Achieved
- Meets Standard
- Needs Improvement
Program (Student) Outcome Achievement Results

May 2021 Term through March 2022 Term

<table>
<thead>
<tr>
<th>Program (Student) Outcome</th>
<th>Direct Measure(s)</th>
<th>Indirect Measures</th>
</tr>
</thead>
</table>
| **1**
Apply knowledge, techniques, skills and modern tools of mathematics, science, engineering, and technology to solve broadly-defined engineering problems appropriate to the nuclear engineering technology discipline.
NUC 495 Capstone: M3A1, M4A1, & M7A1
NUC 260 M4A1 Midterm Exam
NUC 323 M4A2 Midterm Exam
NUC 323 M8A1 Final Exam
Exit Survey
One-Year Survey |
88%
n = 171 |
100%
n = 1 |
96%
n = 153 |
96%
n = 152 |
5.50
n = 10 |
4.33
n = 6 |

| **2**
Demonstrate an ability to design systems, components, or processes meeting specified needs for broadly-defined engineering problems appropriate to the nuclear engineering technology discipline.
NUC 495 Capstone: M5A2, M6A1, & M7A1
NUC 330 M8.4 Team Redesign Project Presentation
NUC 350 M2A1 Interactive Multimedia PWR Reactor Coolant Systems
Exit Survey
One-Year Survey |
93%
n = 171 |
100%
n = 17 |
100%
n = 122 |
5.50
n = 10 |
4.17
n = 6 |

| **3**
Apply written, oral, and graphical communications in broadly-defined technical and non-technical environments; and be able to identify and use appropriate technical literature.
NUC 495 Capstone: M5A2, M7A1, & M8A1
NUC 350 M7A2 Simulator Lesson Review Scenarios
NUC 350 M7A3 Term Paper
Exit Survey
One-Year Survey |
97%
n = 153 |
99%
n = 107 |
99%
n = 120 |
5.50
n = 10 |
5.00
n = 6 |

| **4**
Conduct standard tests, measurements, and experiments, and be able to analyze and interpret the results to improve processes.
NUC 495 Capstone: M3A1 & M7A1
NUC 330 M7.6 Lab Exercise
NUC 350 M7A2 Simulator Lesson Review Scenarios
Exit Survey
One-Year Survey |
76%
n = 171 |
100%
n = 23 |
99%
n = 107 |
5.40
n = 10 |
4.00
n = 6 |

| **5**
Function effectively as a member as well as a leader on technical teams, and apply project management techniques in team project activities.
NUC 495 Capstone: M8A1
NUC 330 M3.7 Team Redesign Project
NUC 211 M4A1 Group Activity Lab Report
Exit Survey
One-Year Survey |
98%
n = 172 |
100%
n = 17 |
100%
n = 10 |
5.60
n = 10 |
4.67
n = 6 |
Program (Student) Outcome

<table>
<thead>
<tr>
<th>Program (Student) Outcome</th>
<th>Direct Measure(s)</th>
<th>Indirect Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Demonstrate comprehension of currently applicable rules and regulations in the areas of: radiation protection, operations, maintenance, quality control, quality assurance, and safety.</td>
<td>NUC 495 Capstone: M5A2 & M7A1</td>
<td>Exit Survey</td>
</tr>
<tr>
<td></td>
<td>NUC 271 M8.3 Final Exam</td>
<td>One-Year Survey</td>
</tr>
<tr>
<td></td>
<td>NUC 271 M7.3 Discussion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>92%</td>
<td>4.67</td>
</tr>
<tr>
<td></td>
<td>n = 171</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 48</td>
<td></td>
</tr>
<tr>
<td>7 Demonstrate an understanding of and commitment to professional, ethical, and social responsibilities, including the impacts of culture, diversity, and interpersonal relations.</td>
<td>NUC 495 Capstone: M5A2, M6A1, & M7A1</td>
<td>Exit Survey</td>
</tr>
<tr>
<td></td>
<td>NUC 271 M2.4 Post-Accident Speech</td>
<td>One-Year Survey</td>
</tr>
<tr>
<td></td>
<td>NUC 350 M6A1 Interactive Multimedia BWR Reactivity Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90%</td>
<td>5.50</td>
</tr>
<tr>
<td></td>
<td>n = 147</td>
<td></td>
</tr>
<tr>
<td></td>
<td>82%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 120</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capstone Exam Results

A comprehensive capstone examination has been administered to all baccalaureate degree students at the conclusion of the NUC 495 Integrated Technology Assessment since September 2010. The capstone examination consists of 120 objective questions that assess the most common and most important topics and skills in seven core content areas within the College's baccalaureate degree nuclear engineering technology curriculum.

From May 2021 term through March 2022 term, the total number of students who took the capstone exam was 176. The mean score on each of the program’s core content areas is shown below:

- 72.7% - Basic Natural Sciences
- 68.3% - Experimentation and Lab Techniques
- 72.3% - Basic Mathematics and Applications
- 62.7% - Technical Problem Solving and Computer Usage
- 65.7% - Basic Nuclear Reactor Theory and Technology
- 72.8% - Health Physics and Radiation Aspects
- 67.6% - Nuclear Power Plant Operation and Maintenance