Microbiology

CREDIT HOURS 3

LEVEL LOWER

EXAM CODE 558
CATALOG NUMBER BIOx220

PUBLISHED FEBRUARY 2019

The most current content guides are available at:
www.excelsior.edu/contentguides
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparing for the Exam</td>
<td>1</td>
</tr>
<tr>
<td>Before You Choose This UExcel Exam</td>
<td>1</td>
</tr>
<tr>
<td>- Uses for the Examination</td>
<td>1</td>
</tr>
<tr>
<td>- Examination Length and Scoring</td>
<td>1</td>
</tr>
<tr>
<td>UExcel Exam Resources</td>
<td>1</td>
</tr>
<tr>
<td>- Excelsior College Bookstore</td>
<td>1</td>
</tr>
<tr>
<td>- UExcel Practice Exams</td>
<td>1</td>
</tr>
<tr>
<td>- Excelsior College Library</td>
<td>2</td>
</tr>
<tr>
<td>- Online Tutoring</td>
<td>2</td>
</tr>
<tr>
<td>Preparing for UExcel Exams</td>
<td>2</td>
</tr>
<tr>
<td>- Take Charge of Your Own Learning</td>
<td>2</td>
</tr>
<tr>
<td>- How Long Will It Take Me to Study?</td>
<td>2</td>
</tr>
<tr>
<td>- Study Tips</td>
<td>2</td>
</tr>
<tr>
<td>- Using UExcel Practice Exams</td>
<td>2</td>
</tr>
<tr>
<td>- About Test Preparation Services</td>
<td>3</td>
</tr>
<tr>
<td>Preparing for This Exam</td>
<td>3</td>
</tr>
<tr>
<td>- Prior Knowledge</td>
<td>3</td>
</tr>
<tr>
<td>- Using the Content Outline</td>
<td>3</td>
</tr>
<tr>
<td>- Using the Sample Questions and Rationales</td>
<td>3</td>
</tr>
<tr>
<td>Recommended Resources for the UExcel Exam in Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>- Textbooks</td>
<td>4</td>
</tr>
<tr>
<td>- Reducing Textbook Costs</td>
<td>4</td>
</tr>
<tr>
<td>- A Word About Open Educational Resources</td>
<td>4</td>
</tr>
<tr>
<td>- Choosing Open Educational Resources</td>
<td>5</td>
</tr>
<tr>
<td>- Other Online Resources</td>
<td>5</td>
</tr>
<tr>
<td>Content Outline</td>
<td>6</td>
</tr>
<tr>
<td>- General Description of the Examination</td>
<td>6</td>
</tr>
<tr>
<td>- Learning Outcomes</td>
<td>6</td>
</tr>
<tr>
<td>- Content Outline</td>
<td>7</td>
</tr>
<tr>
<td>Sample Questions</td>
<td>15</td>
</tr>
<tr>
<td>Rationales</td>
<td>19</td>
</tr>
<tr>
<td>Taking the Exam</td>
<td>23</td>
</tr>
<tr>
<td>Registering for Your Exam</td>
<td>23</td>
</tr>
<tr>
<td>- Register Online</td>
<td>23</td>
</tr>
<tr>
<td>- Examination Administration</td>
<td>23</td>
</tr>
<tr>
<td>- Computer-Delivered Testing</td>
<td>23</td>
</tr>
<tr>
<td>On the Day of Your Exam</td>
<td>23</td>
</tr>
<tr>
<td>- Important Reminders</td>
<td>23</td>
</tr>
<tr>
<td>- Academic Honesty Nondisclosure Statement</td>
<td>24</td>
</tr>
<tr>
<td>- Information About UExcel Exams for Colleges and Universities</td>
<td>24</td>
</tr>
<tr>
<td>Microbiology Exam Development Committee</td>
<td>24</td>
</tr>
</tbody>
</table>
Before You Choose This UExcel Exam

Uses for the Examination

- Excelsior College, the test developer, recommends granting three (3) semester hours of lower-level undergraduate credit to students who receive a letter grade of C or higher on this examination. The examination satisfies the Nursing Science core requirement in microbiology for the Excelsior College associate and baccalaureate degrees in nursing.

- Other colleges and universities also recognize this exam as a basis for granting credit or advanced standing.

- Individual institutions set their own policies for the amount of credit awarded and the minimum acceptable score.

Exam-takers who have applied to Excelsior College should ask their academic advisor where this exam fits within their degree program.

Exam-takers **not enrolled** in an Excelsior College degree program should check with the institution from which they wish to receive credit to determine whether credit will be granted and/or to find out the minimum grade required for credit. Those who intend to enroll at Excelsior College should ask an admissions counselor where this exam fits within their intended degree program.

Examination Length and Scoring

The examination consists of approximately 130 questions, most of which are multiple choice; for samples of all the item types on this exam, see the sample items in the back of this guide. Some items are unscored, pretest items. The pretest items are embedded throughout the exam and are indistinguishable from the scored items. You will have three (3) hours to complete the examination. Your score will be reported as a letter grade.

UExcel Exam Resources

Excelsior College Bookstore

The Excelsior College Bookstore offers recommended textbooks and other resources to help you prepare for UExcel exams.

The bookstore is available online at (login required): www.excelsior.edu/bookstore

UExcel Practice Exams

The official UExcel practice exams are highly recommended as part of your study plan. Once you register for your UExcel exam, you are eligible to purchase the corresponding practice exam, which can be taken using any computer with a supported Web browser. Each practice exam includes two forms that you may take within a 180-day period.
Excelsior College Library
Enrolled Excelsior College students can access millions of authoritative resources online through the Excelsior College Library. Created through our partnership with the Sheridan Libraries of The Johns Hopkins University, the library provides access to journal articles, books, websites, databases, reference services, and many other resources. Special library pages relate to the nursing degree exams and other selected exams. To access it, visit www.excelsior.edu/library (login is required).

Our library provides:
• 24/7 availability
• The world’s most current authoritative resources
• Help and support from staff librarians

Online Tutoring
Excelsior College offers online tutoring through SMARTTHINKING™ to connect with tutors who have been trained in a variety of academic subjects. To access SMARTTHINKING, go to www.excelsior.edu/smartthinking. Once there, you may download a copy of the SMARTTHINKING Student Handbook as a PDF.

Preparing for UExcel Exams
Take Charge of Your Own Learning
At Excelsior College, independent, self-directed study supported by resources we help you find is not a new concept. We have always stressed to exam takers that they are acting as their own teacher, and that they should spend as much time studying for an exam as they would spend in a classroom and on homework for a corresponding college course in the same subject area.

Begin by studying the content outline contained in this content guide, at its most detailed level. You will see exactly which topics are covered, and where chapters on those topics can be found in the Recommended Resources. You will see exactly where you might need to augment your knowledge or change your approach.

The content outline, along with the Learning Outcomes for this exam and recommended textbooks, will serve as your primary resources.

How Long Will It Take Me to Study?
A UExcel exam enables you to show that you’ve learned material comparable to one or more 15-week college-level courses. As an independent learner, you should study and review as much as you would for a college course. For a 3-credit course in a subject they don’t know, most students would be expected to study nine hours per week for 15 weeks, for a total of 135 hours.

Study Tips
Become an active user of the resource materials. Aim for understanding rather than memorization. The more active you are when you study, the more likely you will be to retain, understand, and apply the information.

The following techniques are generally considered to be active learning:
• **preview or survey** each chapter
• **highlight or underline** you believe is important
• **write questions or comments** in the margins
• **practice re-stating content** in your own words
• **relate what you are reading** to the chapter title, section headings, and other organizing elements of the textbook
• **find ways to engage** your eyes, your ears, and your muscles, as well as your brain, in your studies
• **study with a partner or a small group** (if you are an enrolled student, search for partners on MyExcelsior Community)
• **prepare your review notes** as flashcards or create recordings that you can use while commuting or exercising

When you feel confident that you understand a content area, review what you have learned. Take a second look at the material to evaluate your understanding. If you have a study partner, the two of you can review by explaining the content to each other or writing test questions for each other to answer. Review questions from textbook chapters may be helpful for partner or individual study, as well.

Using UExcel Practice Exams
We recommend taking the first form of the practice exam when you begin studying, to see how much you already know. After taking the first practice exam,
check your performance on each question and find out why your answer was right or wrong. This feedback will help you improve your knowledge of the subject and identify areas of weakness that you should address before taking the exam. Take the second form of the practice exam after you have finished studying. Analyze your results to identify the areas that you still need to review.

Although there is no guarantee, our research suggests that students who do well on the practice exams are more likely to pass the actual exam than those who do not do well (or do not take advantage of this opportunity).

About Test Preparation Services
Preparation for UExcel® exams and Excelsior College® Examinations, though based on independent study, is supported by Excelsior College with a comprehensive set of exam learning resources and services designed to help you succeed. These learning resources are prepared by Excelsior College so you can be assured that they are current and cover the content you are expected to master for the exams. These resources, and your desire to learn, are usually all that you will need to succeed.

There are test-preparation companies that will offer to help you study for our examinations. Some may imply a relationship with Excelsior College and/or make claims that their products and services are all that you need to prepare for our examinations.

Excelsior College is not affiliated with any test preparation firm and does not endorse the products or services of these companies. No test preparation vendor is authorized to provide admissions counseling or academic advising services, or to collect any payments, on behalf of Excelsior College. Excelsior College does not send authorized representatives to a student’s home nor does it review the materials provided by test preparation companies for content or compatibility with Excelsior College examinations.

To help you become a well-informed consumer, we suggest that before you make any purchase decision regarding study materials provided by organizations other than Excelsior College, you consider the points outlined on our website at www.excelsior.edu/testprep.

Preparing for This Exam

Prior Knowledge
A general knowledge of chemistry, as well as biology or anatomy and physiology, is assumed.

Using the Content Outline
Each content area in the outline includes (1) the recommended minimum hours of study to devote to that content area and (2) the most important sections of the recommended resources for that area. These annotations are not intended to be comprehensive. You may need to refer to other chapters in the recommended textbooks. Chapter numbers and titles may differ in other editions.

This content outline contains examples of the types of information you should study. Although these examples are numerous, do not assume that everything on the exam will come from these examples. Conversely, do not expect that every detail you study will appear on the exam. Any exam is only a broad sample of all the questions that could be asked about the subject matter.

Using the Sample Questions and Rationales
Each content guide provides sample questions to illustrate those typically found on the exam. These questions are intended to give you an idea of the level of knowledge expected and the way questions are typically phrased. The sample questions do not sample the entire content of the exam and are not intended to serve as an entire practice test.
Recommended Resources for the UExcel Exam in Microbiology

The resources and materials listed below were used by the examination development committee to verify all the questions on the exam. Excelsior College recommends you use these resources as the most appropriate information when ordering textbooks from the college's bookstore (see page 1 of this content guide). You should allow ample time to obtain resources and to study sufficiently before taking the exam, so plan appropriately and systematically.

A word about textbook editions: Textbook editions listed in the UExcel content guides may not be the same as those listed in the bookstore. Textbook editions may not exactly match up in terms of table of contents and organization, depending upon the edition. However, our team of exam developers checks exam content against every new textbook edition to verify that all subject areas tested in the exam are still adequately available in the study materials. If needed, exam developers will list supplemental resources to ensure that all topics in the exam are still sufficiently covered. Public libraries may have the textbooks you need, or may be able to obtain them for you through interlibrary loan to reduce textbook costs. You may also consider financial aid, if you qualify, to further help defray the steep cost of textbooks. A section on OER has been included in this guide to help you locate additional resources to augment your study.

Textbooks

These textbooks were identified by the examination development committee as additional resources to help you gain a deeper understanding of the subject.

These study materials may be purchased from the Excelsior College Bookstore (login required). Resources may be available in both print and digital forms.

Reducing Textbook Costs

Many students know it is less expensive to buy a used textbook, and buying a previous edition is also an option. The Excelsior College bookstore includes a buyback feature and a used book marketplace, as well as the ability to rent digital versions of textbooks for as long as students need them. Students are encouraged to explore these and the many other opportunities available online to help defray textbook costs.

A Word About Open Educational Resources

Open educational resources (OER) are educational materials available for study at no cost on the Web. Some OER are available for anyone to access any time. Others, such as Massive Open Online Courses (MOOCs), require sign-up and are only available during certain windows. Please note that some MOOC providers offer certificates of completion or other products or services for a fee. No MOOC or other OER is a complete substitute for the content guide and officially Recommended Resources listed here in this content guide. However, by definition, MOOCs are essentially free of charge and include access to a main body of learning materials that may help you in your learning.

Being an independent learner preparing for credit by exam, you may not need any of the fee-based options that are offered elsewhere online. But if you are looking for a coherent academic course for self-study, lectures on specific topics, or audio or visual materials that fit your learning style better than print materials alone, a MOOC or other type of OER may be your answer. Keep in mind that none of these OER were designed by Excelsior, nor are they guaranteed to match the exam content outlines completely. They are simply another tool available in your study kit.
We highly encourage using the Recommended Resources. In the content outline, you will see that the topics in the exam are referenced to specific portions of recommended textbooks. Using OER alone will not ensure you’ve completely covered the content in the exam, or it may not cover some topics in sufficient-enough depth without the use of the formal, recommended textbooks.

If the OER course you choose does not include a textbook for reference and you do not have significant practical theory-based experience in the field of study, use a college textbook to ensure adequate preparation for the exam, and use the exam’s content outline as a guide.

Combined with comparable college textbooks, OER provides you with a variety of choices in knowledge sources and learning experiences, to enhance your understanding of the subject matter.

Choosing Open Educational Resources

Most sites for university-based OER can be searched through www.ocwconsortium.org and/or www.oercommons.org.

Sites that specialize in Web courses designed by college professors under contract with the website sponsor, rather than in Web versions of existing college courses, include:

www.education-portal.com

www.opencourselibrary.org (abbreviated as OCL)

We have included specific courses that cover material for one or more UExcel® exams from the sites in the listings above. It’s worth checking these sites frequently to see if new courses have been added that may be more appropriate or may cover an exam topic not currently listed.

In addition, sites like Khan Academy (www.khanacademy.com) and iTunes U feature relatively brief lessons on very specific topics rather than full courses. Full courses are also available on iTunes U (http://www.apple.com/education/ipad/itunes-u/). We have chosen a few courses and collections for this listing.

Other Online Resources

This section of the OER Guide is provided to allow learners to independently search for resources. Send an e-mail to OER@excelsior.edu if you have questions about a resource’s credibility.

Open Online Textbooks

Boundless open textbooks
https://wwwBOUNDLESS.com/open-textbooks/

BookBoon
http://bookboon.com/en/textbooks-ebooks

Flatworld Knowledge
http://catalog.flatworldknowledge.com/#our-catalog

College Readiness

Khan Academy
http://www.khanacademy.org/

Hippocampus
http://www.hippocampus.org/

Open Course Library
http://opencourselibrary.org/collg-110-college-success-course/

Study Aids

Education Portal
http://education-portal.com/

Khan Academy
http://www.khanacademy.org/

Annenberg Learner
http://www.learner.org/

OpenCourseWare
http://ocwconsortium.org/en/courses/search

OER Commons
http://www.oercommons.org/

Open Course Library
http://www.opencourselibrary.org/
General Description of the Examination

The UExcel Microbiology examination is based on material typically taught in a one-semester, three-credit, lower-level course in microbiology for those majoring in science or an applied science field such as nursing.

The examination measures the knowledge and understanding of concepts and principles related to microbiology, including biology and control of microorganisms, disease, resistance, and the immune system, the biology of infectious disease, and environmental, food, and industrial microbiology, and the ability to apply this information to real-life examples.

Those beginning to study for this exam should be familiar with the concepts generally covered in chemistry, biology, or anatomy and physiology.

Learning Outcomes

After you have successfully worked your way through the recommended study materials, you should be able to demonstrate the following learning outcomes:

1. Describe the basic concepts of microbiology and its historical development.
2. Describe microbial laboratory techniques.
3. Describe the anatomy, growth and nutrition, metabolism, and genetics of microorganisms.
4. Describe principles of microbial control.
5. Describe diseases, resistance to diseases, and the role of the immune system.
6. Describe the biology of infectious diseases.
7. Describe environmental, food, and industrial microbiology.
Content Outline

The content outline describes the various areas of the test, similar to the way a syllabus outlines a course. To fully prepare requires self-direction and discipline. Study involves careful reading, reflection, and systematic review.

The major content areas on the Microbiology examination, the percent of the examination, and the hours to devote to each content area are listed below.

<table>
<thead>
<tr>
<th>Content Area</th>
<th>Percent of the Examination</th>
<th>Hours of Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction to Microbiology</td>
<td>5%</td>
<td>7</td>
</tr>
<tr>
<td>II. Biology of Microorganisms</td>
<td>25%</td>
<td>34</td>
</tr>
<tr>
<td>III. Control of Microorganisms</td>
<td>15%</td>
<td>20</td>
</tr>
<tr>
<td>IV. Disease, Resistance, and the Immune System</td>
<td>20%</td>
<td>27</td>
</tr>
<tr>
<td>V. Biology of Infectious Disease</td>
<td>25%</td>
<td>34</td>
</tr>
<tr>
<td>VI. Environmental, Food, and Industrial Microbiology</td>
<td>10%</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

NOTE ON TOPICS: Occasionally, examples will be listed for a content topic to help clarify that topic. However, the content of the examination is not limited to the specific examples given.

NOTE ON CHAPTERS: Chapters relevant to the major content areas are listed. Some chapters may be relevant to more than one area and are listed in each area. In some cases, only parts of a given chapters are relevant. The content outline will guide you as to which sections of a chapter to focus on.

I. **Introduction to Microbiology**

<table>
<thead>
<tr>
<th>5 PERCENT OF EXAM</th>
<th>7 HOURS OF STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tortora (2016)</td>
<td></td>
</tr>
<tr>
<td>Ch. 1, The Microbial World and You</td>
<td></td>
</tr>
</tbody>
</table>

Ch. 3, Observing Microorganisms Through a Microscope

Ch. 10, Classification of Microorganisms

Ch. 11, The Prokaryotes: Domains Bacteria and Archaea

Ch. 12, The Eukaryotes: Fungi, Algae, Protozoa, and Helminths

Ch. 13, Viruses, Viroids, and Prions

A. **Early history**

1. Discovery of microorganisms
2. Disproving spontaneous generation
3. Development of germ theory of disease
4. Discovery of immunity
5. Discovery of viruses
6. Development of chemotherapeutic agents

B. **Place of microorganisms in the world**

1. Prokaryotes vs. eukaryotes
2. Prokaryotae
 a. Bacteria
 b. Cyanobacteria
3. Archaeobacteria
4. Eukaryotae
 a. Protista
 1) Protozoa
 2) Simple algae
 b. Fungi
5. Viruses

C. Microbial laboratory techniques
 1. Microscopy
 2. Stain procedures
 3. Media preparation and growth
 4. Pure culture and aseptic techniques

II. Biology of Microorganisms

25 PERCENT OF EXAM | 34 HOURS OF STUDY

Tortora

Ch. 4, Functional Anatomy of Prokaryotic and Eukaryotic Cells
Ch. 5, Microbial Metabolism
Ch. 6, Microbial Growth
Ch. 8, Microbial Genetics
Ch. 9, Biotechnology and DNA Technology
Ch. 10, Classification of Microorganisms
Ch. 11, The Prokaryotes: Domains Bacteria and Archaea
Ch. 12, The Eukaryotes: Fungi, Algae, Protozoa, and Helminths
Ch. 13, Viruses, Viroids, and Prions

A. Anatomy
 1. Prokaryotes
 a. Bacteria
 1) Gross morphology — cell size, shape, and arrangement
 2) Component parts — name, chemistry, function, and importance
 a) Cell envelope
 i) Capsule
 ii) Cell wall
 iii) Cell membrane
 b) Cytoplasm
 i) Chromosome and plasmids
 ii) Ribosomes
 iii) Cell inclusions
 c) Spores
 d) Appendages
 i) Flagella
 ii) Pili
 b. Cyanobacteria — special features
 2. Eukaryotes
 a. Fungi
 1) Cellular and vegetative structures
 2) Reproductive structures
 b. Algae
 1) Cellular structures
 2) Photosynthetic apparatus
 c. Protozoa
 1) Structures for locomotion — flagella, cilia, pseudopodia
 2) Vacuoles

B. Growth and nutrition
 1. Patterns of nutrition
 2. Requirements for growth (increase in numbers/mass)
 a. Physical — pH, temperature
 b. Chemical — nitrogen, carbon, energy sources; vitamins; trace elements
 c. Gaseous — anaerobic, aerobic, facultative
3. Cultivation
 a. Selective, enrichment, and differential media
 b. Mixed and pure cultures
 c. Culture techniques — solid and liquid media

4. Dynamics of populations
 a. Growth mechanisms — binary fission, mycelial growth, budding
 b. Growth rates, generation times
 c. Growth curve: lag, exponential growth, and stationary phases
 d. Enumeration of cell number and culture mass — viable and total counts, turbidity

C. Metabolism — basic mechanisms of metabolism and energy conversion
 1. Enzymes (mediators of all reactions)
 a. Structures and function
 b. Factors that influence enzyme activity
 2. Photosynthetic vs. chemosynthetic metabolism
 3. Cellular respiration
 a. Aerobic
 b. Anaerobic
 c. Fermentation
 4. Photosynthesis
 5. Biosynthetic mechanisms
 a. Macromolecular synthesis
 1) Nucleic acid
 2) Gene expression and protein synthesis
 b. Regulation
 1) Control of enzyme activity (feedback regulation)
 2) Control of enzyme synthesis

D. Genetics
 1. Variation in populations of cells and viruses
 a. Genotype and phenotype
 b. Haploid and diploid
 c. Asexual and sexual

2. Mutations
 a. Spontaneous, induced
 b. Selection of mutants
 c. Types of mutations

3. Recombination
 a. Transformation
 b. Transduction (generalized, specialized)
 c. Conjugation

4. Gene manipulation
 a. Plasmids
 b. Genetic elements
 c. Genetic engineering/recombinant DNA techniques
 d. Applications of genetic engineering

E. Viruses
 1. Structure
 a. Type of nucleic acid
 b. Capsid, envelope, specialized structures
 2. Multiplication of viruses
 a. Lytic cycle
 b. Lysogenic cycle
 c. Retroviruses
 3. Effects of viruses on cells
 a. Isolation and detection of viruses
 b. Cytopathological effects
 c. Transformation and oncogenesis
 d. Control of viral replication

III. Control of Microorganisms

| 15 PERCENT OF EXAM | 20 HOURS OF STUDY |

Tortora
Ch. 7, The Control of Microbial Growth
Ch. 20, Antimicrobial Drugs
A. Principles of microbial control

1. Factors influencing success of control methods
 a. Number and nature of microorganisms
 b. Strength of control agent
 c. Time, temperature, and pH

2. General methods of control
 a. Bactericidal vs. bacteriostatic
 b. Sterilization
 c. Asepsis
 d. Disinfection and antiseptics
 e. Sanitation
 f. Antibiosis and chemotherapy

B. Physical methods of control

1. Incineration
2. Dry heat
3. Moist heat
 a. Boiling water
 b. Pressurized steam (autoclave)
 c. Pasteurization
4. Radiation
 a. Ultraviolet
 b. Ionizing
5. Filtration

C. Chemical methods of control

1. Chemical agents
 a. Halogens
 b. Alcohols
 c. Phenols
 d. Heavy metals
 e. Aldehydes
 f. Gases
 g. Detergents
 h. Peroxides
2. Tests for effectiveness of antiseptics and disinfectants
 a. Phenol coefficient test

D. Chemotherapeutic agents and antibiotics

1. Modes of action
2. Chemotherapeutic agents (nucleic acid analogs and others)
 a. Antiviral agents
 b. Antifungal agents
 c. Antiparasitic agents
3. Antibiotics (penicillin and others)
 a. The problem of antibiotic resistance
 b. Antibiotic sensitivity assays

IV. Disease, Resistance, and the Immune System

<table>
<thead>
<tr>
<th>20 PERCENT OF EXAM</th>
<th>27 HOURS OF STUDY</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tortora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch. 14, Principles of Disease and Epidemiology</td>
</tr>
<tr>
<td>Ch. 15, Microbial Mechanism of Pathogenicity</td>
</tr>
<tr>
<td>Ch. 16, Innate Immunity: Nonspecific Defenses of the Host</td>
</tr>
<tr>
<td>Ch. 17, Adaptive Immunity: Specific Defenses of the Host</td>
</tr>
<tr>
<td>Ch. 18, Practical Applications of Immunology</td>
</tr>
<tr>
<td>Ch. 19, Disorders Associated with the Immune System</td>
</tr>
</tbody>
</table>

A. The disease process

1. Host-parasite relationships
 a. The concepts of infection and disease
 b. The normal flora
 c. Commensalism
 d. Mutualism
 e. Antibiosis
 f. Opportunists
 g. Virulence
2. Progress of disease
 a. Periods of disease
 b. Clinical and subclinical disease
3. Types of diseases
 a. Communicable and noncommunicable diseases
 b. Endemic, epidemic, and pandemic diseases
 c. Acute and chronic diseases
 d. Primary and secondary diseases
 e. Local and systemic diseases
 f. Nosocomial diseases
4. Establishment of disease
 a. Transmission
 b. Portal of entry
 c. Dose
 d. Virulence factors
B. Nonspecific resistance to disease
 1. Mechanical and chemical factors
 a. Skin
 b. Mucous membranes
 c. pH (cell, tissue, organ)
 d. Lysozyme
 2. Phagocytosis
 a. Types of phagocytes
 b. Mechanism of phagocytosis
 c. Reticuloendothelial system (mononuclear phagocytic system)
 3. Inflammation
 4. Individual, species, and racial immunities
C. Principles of immunology
 1. Antigens
 a. Definition, composition, and types of antigens
 b. Haptens
 c. Immunologic tolerance
 d. Self vs. nonself
 2. The immune system
 a. B lymphocytes
 b. T lymphocytes
 c. Location and operation of the immune system
 d. Cell-mediated immunity — process, stimulation, lymphokines
 e. Antibody-mediated (humoral) immunity — antibody structure and origin, five types of antibodies, primary and secondary antibody responses, opsonization, antigen-antibody reactions, neutralization, precipitation, agglutination
 f. The complement system
 g. The alternative pathway
3. Types of immunity
 a. Naturally acquired, active immunity
 b. Artificially acquired, active immunity
 c. Naturally acquired, passive immunity
 d. Artificially acquired, passive immunity
4. Serological and diagnostic reactions
 a. Radioimmunoassays
 b. Neutralization reactions
 c. Precipitation and agglutination
 d. Complement fixation
 e. Monoclonal antibody
 f. Fluorescent antibody tests
 g. Enzyme-linked immunosorbent assay (ELISA)
 h. Western-blot analysis
 i. Polymerase chain reaction (PCR)
 j. Gene probe
D. Disorders of the immune system
 1. Type I anaphylactic hypersensitivity
 a. Allergens and IgE
 b. Basophils and mast cells
 c. Degranulation and mediator release
 d. Atopic diseases
 2. Type II cytotoxic hypersensitivity
a. Transfusion reactions
b. Hemolytic disease of the newborn
c. Autoimmune reactions

3. Type III immune complex hypersensitivity
 a. Immune complex formation
 b. Serum sickness
 c. Systemic lupus erythematosus (SLE)

4. Type IV cellular hypersensitivity
 a. Infection allergy
 b. Contact dermatitis
 c. Tuberculin skin test

5. Immune-deficiency diseases

V. Biology of Infectious Diseases

25 PERCENT OF EXAM | 34 HOURS OF STUDY

Tortora
Ch. 19, Disorders Associated with the Immune System
Ch. 21, Microbial Diseases of the Skin and Eyes
Ch. 23, Microbial Diseases of the Cardiovascular and Lymphatic Systems
Ch. 24, Microbial Diseases of the Respiratory System
Ch. 25, Microbial Diseases of the Digestive System
Ch. 26, Microbial Diseases of the Urinary and Reproductive Systems

Parameters for the study of infectious disease:
• Recognition of the disease syndrome (symptoms)
• Etiology of the disease
 – unique morphological characteristics of the agent(s)
 – unique physiological characteristics of the agent(s)
 – unique cultural characteristics of the agent(s)
• Mode of transmission and portal of entry
• Methods of immunization
• Methods of prevention, control, and/or treatment

A. Respiratory tract diseases
1. Bacterial diseases
 a. Tuberculosis
 b. Diphtheria
 c. Pertussis
 d. Streptococcal diseases
 e. Bacterial pneumonia
 f. Primary atypical pneumonia
 g. Legionnaires’ disease
 h. Bacterial meningitis
 i. Chlamydial diseases

2. Viral diseases
 a. Common cold
 b. Influenza
 c. Measles
 d. Mumps
 e. Chickenpox
 f. Rubella
 g. Viral pneumonia

3. Fungal diseases
 a. Cryptococcosis
 b. Histoplasmosis
 c. Aspergillosis

4. Protozoan diseases — Pneumocystis carinii pneumonia

B. Gastrointestinal tract diseases and intoxications
1. Bacterial diseases and intoxications
 a. Typhoid fever
 b. Cholera
 c. Salmonellosis
 d. Escherichia coli disease
 e. Campylobacter disease
 f. Helicobacter pylori disease
 g. Shigellosis
 h. Botulism
i. Staphylococcal food poisoning
j. *Clostridium perfringens* food poisoning
k. Brucellosis

2. Viral diseases
 a. Hepatitis A
 b. Enteroviral infections

3. Protozoan diseases
 a. Amoebiasis
 b. Giardiasis
 c. Cryptosporidiosis

C. Urogenital tract diseases
 1. Bacterial diseases
 a. Gonorrhea
 b. Syphilis
 c. Chlamydia
 2. Viral diseases
 a. Genital herpes
 b. Genital warts
 3. Fungal diseases — candidiasis
 4. Protozoan diseases — trichomoniasis

D. Skin and wound diseases
 1. Bacterial diseases
 a. Tetanus
 b. Staphylococcal diseases
 c. Anthrax
 d. Leprosy
 e. Gas gangrene
 2. Viral diseases
 a. Smallpox
 b. Rabies
 c. Warts
 d. Herpes simplex infections
 3. Fungal diseases
 a. Ringworm (tinea)
 b. Candidiasis

E. Blood diseases

1. Bacterial diseases
 a. Plague
 b. Tularemia
 c. Spotted fevers
 d. Typhus fevers
 e. Q fever
 f. Lyme disease
 g. Toxic shock syndrome

2. Viral diseases
 a. Yellow fever
 b. Viral encephalitis
 c. Hepatitis B and hepatitis C
 d. Infectious mononucleosis
 e. Hemorrhagic fevers

3. Protozoan diseases
 a. Malaria
 b. Sleeping sickness
 c. Toxoplasmosis

F. Nosocomial diseases

G. Acquired immunodeficiency syndrome (AIDS)
 1. Human immunodeficiency virus (HIV)
 2. Transmission and epidemiology
 3. Pathology (including opportunistic infections)
 4. Diagnosis
 5. Treatment

VI. Environmental, Food, and Industrial Microbiology

10 PERCENT OF EXAM | 14 HOURS OF STUDY

Tortora
Ch. 27, Environmental Microbiology
Ch. 28, Applied Industrial Microbiology

A. Environmental (ecological) microbiology
 1. Terrestrial environment (soils)
 a. Flora of soil
b. Biogeochemical cycles (carbon, nitrogen, sulfur, phosphorus)
c. Biodegradation and recycling

2. Aquatic environment
 a. Fresh water and marine environment
 b. Aquatic pollution (eutrophy, human waste, food waste, industrial waste)
 c. Pollution abatement
 (1) Waste water treatment
 (2) Preparation of drinking water

B. Food microbiology
 1. Foods produced using microorganisms
 2. Spoilage of food by microorganisms
 3. Preservation methods

C. Industrial microbiology
 1. Alcoholic beverages (beer, wine, distilled spirits)
 2. Production of organic compounds (organic acids, amino acids, vitamins, enzymes, steroids, antibiotics, other pharmaceuticals)
 3. Biological insecticides
 4. Genetically engineered or recombinant DNA products
Sample Questions

The sample questions give you an idea of the level of knowledge expected in the exam and how questions are typically phrased. They are not representative of the entire content of the exam and are not intended to serve as a practice test.

Rationales for the questions can be found on pages 19–22 of this guide. In that section, the correct answer is identified and each answer is explained. The number in parentheses at the beginning of each rationale refers to the corresponding section of the content outline. For any questions you answer incorrectly, return to that section of the content outline for further study.

You will be provided with an erasable white board to use during your exam, and you will have access to a basic 8-function calculator on the computer. The calculator button is located in the top left-hand corner of the screen, as each question is presented. A picture of a typical 8-function calculator is provided on page 23.

1. Which microorganisms are classified as prokaryotes?
 1) algae
 2) archaeobacteria
 3) protozoans
 4) yeasts

2. The Gram stain is an example of which type of stain?
 1) differential
 2) lipid granule
 3) negative
 4) simple

3. The presence of a spore in a vegetative bacterial cell helps establish that the organism is of which genus?
 1) Bacillus
 2) Erwinia
 3) Pseudomonas
 4) Salmonella

4. Euglena gracilis is generally classified as having which nutrition process?
 1) autotrophic
 2) heterotrophic
 3) parasitic
 4) saprophytic

5. In a mixed culture, a particular bacterial species represents 0.01% of the total cell population. What is the best way to isolate this species in a pure culture?
 1) Use the pour plate isolation method.
 2) Grow the culture on a minimal medium.
 3) Grow the culture on an enrichment medium and then use the streak plate method.
 4) Use the streak plate method directly.

6. A barrier that prevents the passage of bacteria, but not smaller particles, is placed between a genetic donor and a genetic recipient. Which gene transfer will be stopped by this barrier?
 1) conjugation
 2) generalized transduction
 3) specialized transduction
 4) transformation
7. If a bacterial gene coding for a repressor protein were to be mutated so that it would no longer bind to the operator site on the DNA, what would happen to the structural genes controlled by that repressor?
 The structural genes would be
 1) permanently turned on.
 2) turned on only in the presence of the inducer.
 3) turned on only in the absence of the inducer.
 4) turned off.

8. What can be determined from the one-step growth curve exhibited by lytic bacteriophage?
 1) the extent of recombination during the latent period
 2) the site of the virion particles
 3) the average number of viruses released per infected cell
 4) the evolutionary relatedness of bacteriophage and animal viruses

9. Which method ensures sterilization because of its high sporicidal activity?
 1) desiccation
 2) pasteurization
 3) pressurized steam
 4) ultraviolet light

10. How does moist heat kill bacteria?
 1) by causing hemolysis of the cell
 2) by denaturing proteins in the cell
 3) by dissolving lipids in the cell
 4) by extracting water from the cell

11. In which form of radiation does the killing of cells result from inactivation of sensitive macromolecules by free radicals such as the hydroxyl radical (OH)?
 1) infrared
 2) ionizing
 3) ultraviolet
 4) visible

12. Why is the practice of adding antibiotics to animal feed controversial?
 The practice
 1) inflates the cost of meat.
 2) limits the supply of antibiotics for humans.
 3) lowers the natural resistance of the animal to disease.
 4) promotes development of bacterial resistance.

13. Which microorganism is a common, normal inhabitant of the human intestine?
 1) Escherichia coli
 2) Pseudomonas aeruginosa
 3) Staphylococcus aureus
 4) Vibrio cholerae

14. How do tears and saliva disrupt the cell walls of gram-positive bacteria?
 Tears and saliva
 1) contain lysozyme, which weakens the cell wall.
 2) are basic and hydrolyze the cell wall.
 3) deprive the bacteria of oxygen.
 4) lower the ionic strength of the fluid in which the bacteria are suspended.

15. What do high serum titers of IgM indicate?
 1) the typical primary response to an antigen
 2) a typical secondary response to an antigen
 3) the inability to produce IgG
 4) a disorder of the immune system

16. A child immunized with a polio vaccine will develop which type of immunity?
 1) artificially acquired, active
 2) artificially acquired, passive
 3) naturally acquired, active
 4) naturally acquired, passive
17. Why is streptococcus pneumoniae resistant to destruction by phagocytosis?
 Resistance is due largely to the
 1) presence of a streptococcal capsule.
 2) chemical nature of the streptococcal cell membrane.
 3) secretion of streptococcal exotoxin by the rough strain.
 4) secretion of streptococcal endotoxin by the smooth strain.

18. A newborn in an intensive care nursery has low birth weight and shows signs of cataracts and a heart murmur. A history reveals that the mother had contracted an undiagnosed upper respiratory tract infection with a low-grade fever and a mild skin rash during the third week of pregnancy. Which microbial agent would most likely be responsible for these occurrences in both mother and newborn?
 1) beta-hemolytic streptococci
 2) Haemophilus influenzae
 3) Mycoplasma pneumoniae
 4) rubella virus

19. A poultry processor comes to the clinic complaining of chronic cough and general malaise. Lung X rays show calcified nodules. A tuberculin test and acid-fast test are negative. Sputum samples show large fungus-like oval cells, often inside leukocytes. What is the most probable cause of the person's signs and symptoms?
 1) an adenovirus
 2) Histoplasma capsulatum
 3) Mycobacterium tuberculosis
 4) Treponema pallidum

20. What is the mechanism that leads to death in patients with cholera?
 1) cardiomyopathy
 2) endotoxin poisoning
 3) fluid and electrolyte losses
 4) renal failure

21. Why are there more female than male carriers of gonorrhea in the United States?
 1) Acidity of the female reproductive tract enhances infectivity and growth of the gonococcus.
 2) Females are often asymptomatic and therefore fail to seek treatment.
 3) Increased use of condoms usually prevents male exposure.
 4) Males are more easily treated and cured than are females.

22. What does the presence of coliform bacteria in a drinking water supply indicate?
 The water is
 1) safe to drink, because coliform bacteria are not usually pathogenic.
 2) potentially dangerous to drink, because the water is contaminated with bacteriophage.
 3) potentially dangerous to drink, because the water is contaminated with soil or sewage.
 4) dangerous to drink, because coliform bacteria cause fatal intestinal disease.

23. Which disease may be prevented by immunizing with a toxoid?
 1) smallpox
 2) tetanus
 3) tuberculosis
 4) typhoid fever

24. A microorganism used in an industrial setting to produce antibiotics should ideally exhibit which characteristic?
 The microorganism should
 1) be a small, slowly growing microbe.
 2) grow at low temperatures.
 3) excrete the secondary metabolite.
 4) produce large amounts of polysaccharide.
25. The conversion of ethanol in wine to acetic acid occurs under which circumstance?

1) Organisms are present in the wine that carry out malolactic fermentation.
2) The ethanol concentration of the wine is too low to inhibit the growth of acetic acid bacteria.
3) Too much fermentable carbohydrate is present in the wine.
4) The wine has been exposed to aerobic conditions for too long.
Rationales

1.(IB3)
1) Algae are classified as eukaryotes.
*2) The archaeobacteria are classified as prokaryotes because they lack a nucleus, nuclear membrane, and organelles. Archaeobacteria also have other properties consistent with the prokaryotes.
3) Protozoans are classified as eukaryotes.
4) Yeasts are classified as eukaryotes.

2.(IC2)
*1) The Gram stain is a differential stain because it stains separate parts of a cell differently. It is used to distinguish between gram-positive and gram-negative bacterial populations based on the distinctive staining characteristics of their cell walls.
2) The lipid granule stain does not separate bacteria into groups. It allows viewing of the structures within the cells.
3) The negative stain does not separate bacteria into groups. It is used to show clear bacteria on a dark background.
4) Although it is used to stain bacteria, the simple stain does not separate bacteria into groups.

3.(IIA)
*1) Spore formation in the bacteria is limited almost exclusively to members of the genera *Bacillus* and *Clostridium*.
2) Bacteria of the *Ervinia* genus do not produce spores.
3) Bacteria of the *Pseudomonas* genus do not produce spores.
4) Bacteria of the *Salmonella* genus do not produce spores.

4.(IIB1)
*1) Euglena gracilis is considered autotrophic because it uses its photosynthetic pigments to synthesize its own food materials.
2) Heterotrophic refers to an organism that uses preformed organic matter for food.
3) Parasitic refers to an organism that uses living preformed organic matter.
4) Saprophytic refers to an organism that uses nonliving preformed organic matter.

5.(IIB3)
1) The pour plate method would be inappropriate because the organism of interest is too rare.
2) This is an inappropriate method because not all species grow on minimal media.
*3) The enrichment medium increases the relative percentage of the organism of interest when the population streak plate method is used afterward.
4) The organism of interest is too rare for the streak plate method to be used directly.

*correct answer
6.(IID3)
*1) Conjugation requires cell-to-cell contact and would be blocked by the barrier.
2) Generalized transduction utilizes phage that can pass through the barrier.
3) Specialized transduction utilizes phage that can pass through the barrier.
4) Transformation uses DNA that can pass through the barrier.

7.(IID4c)
*1) The RNA polymerase would always find an open promoter/operon region.
2) The repressor never binds to DNA.
3) The repressor never binds to DNA under the conditions described.
4) Operons are turned off when the repressor is bound. This cannot happen because the repressor is a mutant.

8.(IIIE2a)
1) Information about the extent of recombination is not required.
2) The curve gives no indication of the location of virion particles.
*3) The curve indicates the number of phage particles.
4) The curve shows the number of viruses released, but provides no information on the phylogeny of viruses.

9.(IIIB3b)
1) Desiccation is not a reliable form of sterilization because it has low sporicidal activity.
2) Pasteurization is not a reliable form of sterilization because it has virtually no sporicidal activity.
*3) Pressurized steam is used for sterilization in the autoclave where it penetrates tough bacterial spores and destroys them quickly.
4) Ultraviolet light is not a reliable form of sterilization because it has low sporicidal activity.

10.(IIB3b)
1) Bacteria cells are not blood, so hemolysis does not occur.
*2) Small temperature increases lead to denaturation of some proteins.
3) Lipids are more resistant to moist heat than are proteins.
4) Water remains within a cell until driven off at increasingly higher temperatures.

11.(IIIB4b)
1) Infrared radiation is not strong enough to induce the production of oxygen radicals.
*2) Ionizing radiation is powerful enough to ionize water by causing atoms to change to ions.
3) Ultraviolet light is not strong enough to induce the production of oxygen radicals.
4) Visible radiation is not strong enough to induce the production of oxygen radicals.

12.(IIID3a)
1) The practice of adding antibiotics to animal feed may actually reduce the cost of feed as animals gain weight faster.
2) The practice may lead to an oversupply of antibiotics needed for human beings.
3) The practice lowers the antibiotic resistance of the animals to disease.
*4) The practice preferentially allows the growth of bacteria strains that are resistant to drugs used to treat human infections.

13.(IVA1b)
*1) The intestine of most human beings contains a population of nonpathogenic Escherichia coli as part of its normal flora.
2) Pseudomonas aeruginosa is not commonly located in the intestine. It is a possible pathogen in individuals who are immunocompromised.
3) Staphylococcus aureus is not commonly located in the intestine. It is found in the nose and on the skin.
4) Vibrio cholerae is not commonly located in the intestine. It is a pathogen and the agent of cholera.

*correct answer
14. (IVB1d)
1) Lysozyme in tears and saliva weakens the cell wall by rupturing peptidoglycan layers.
2) The pH of tears and saliva is not basic enough to break the cell wall.
3) Oxygen is diffused, not deprived, through tears.
4) The ionic strength is increased due to NaCl in tears.

15. (IVC2e)
1) IgM antibodies are the primary response to exposure to an antigen.
2) IgG antibodies appear 24 to 48 hours after the primary response to exposure to an antigen.
3) Recent exposure to antigens does not induce the production of IgG.
4) There is no known disorder that only produces IgM.

16. (IVC3b)
1) Vaccination is an artificial means of introducing antigens to the body, and since the body produces its own antibodies, the immunity is active.
2) Artificially acquired, passive immunity results from an injection of antibodies.
3) Naturally acquired, active immunity results from an episode of disease, even if the disease is subclinical.
4) Naturally acquired, passive immunity results from antibodies passed from mother to child across the placenta.

17. (VA1d)
1) The large capsule of Streptococcus pneumoniae prevents the phagocyte from adhering to the cell.
2) The cell membrane of Streptococcus pneumoniae is not involved in resistance to phagocytosis.
3) The rough strain of Streptococcus pneumoniae is nonvirulent.
4) Endotoxins are only produced by gram-negative bacteria and Streptococcus pneumoniae is gram-positive.

18. (VA2b)
1) A beta-hemolytic infection is commonly associated with high-grade fever.
2) This organism, which can inhabit the mucous membranes of the upper respiratory tract, is not characterized by skin rashes.
3) This organism is the causative agent of “walking pneumonia,” and generally does not produce the signs described in the newborn.
4) Rubella often goes undetected and can produce the signs described in the newborn if contracted in the first trimester of pregnancy.

19. (VA3f)
1) Adenoviruses generally cause the common cold, characterized by swelling of the lymph nodes, or meningitis.
2) This causative organism is a dimorphic fungus that can appear in yeastlike form in macrophages, where it can multiply.
3) Both the tuberculin and acid-fast tests were negative, so this organism is not the causative agent.
4) This bacterium is the spirochete that causes syphilis and does not produce the signs described.

20. (VB1)
1) Cardiomyopathy is a disorder of the heart muscle and is often of unknown etiology.
2) Endotoxin is associated with typhoid fever, meningitis, and urinary tract infections, not cholera.
3) Because of the loss of fluids in persons with cholera, the blood becomes so viscous that vital organs cannot function properly.
4) In renal failure, abrupt reduction of renal function is accompanied by progressive retention of waste compounds and is not associated with cholera.

*correct answer
21.(VC1a)
1) The acidity of the female reproductive tract inhibits infectivity, it does not enhance it.
2) The disease in females is more insidious than in males.
3) The use of condoms would help prevent disease transmission to either sex.
4) Treatment is the same for both females and males.

22.(VIA2c)
1) Coliforms may be pathogenic and can cause diarrhea and opportunistic urinary tract infections.
2) Bacteriophages do not affect human beings.
3) Coliforms are indicator organisms for the presence of human waste in water.
4) Although coliforms can cause disease, the disease is not usually fatal.

23.(VD1a)
1) Smallpox vaccination develops after an injection of cowpox viruses.
2) Tetanus toxoid is used in the DPT vaccine to produce immunity against tetanus.
3) A toxoid is not used to render immunity to tuberculosis. A preparation of live bacteria called BCG is used.
4) A toxoid is not used to render immunity to typhoid fever. Instead, treated bacteria are used.

24.(VIC2)
1) A small, slowly growing microbe would slow the antibiotic process and provide greater likelihood of contamination.
2) Low temperatures would cause the microorganism to grow more slowly. [See 1) above].
3) Antibiotics are secondary metabolites that are easy to retrieve if in an appropriate growth medium.
4) Polysaccharide makes purification of a compound difficult.

25.(VIC2)
1) Malolactic fermentation is not involved in the conversion of ethanol in wine to acetic acid.
2) This condition does not lead to acetic acid production.
3) See 2).
4) When wine is exposed to the air (under aerobic conditions), acid-forming bacteria use the oxygen to convert the ethanol in wine to acetic acid.
Registering for Your Exam

Register Online

www.excelsior.edu/examregistration
Follow the instructions and pay by Visa, MasterCard, American Express, or Discover Card.

Examination Administration

Pearson Testing Centers serve as the administrator for all Excelsior College computer-delivered exams. The Disability Services office at Excelsior College is responsible for considering requests for reasonable accommodations (exceptions for individual students with documented disabilities). If you are requesting an accommodation due to a disability, download and complete a Request for Accommodation form that can be accessed by visiting the Excelsior College website at www.excelsior.edu/disability-services.

Computer-Delivered Testing

You will take the exam by computer, entering your answers using either the keyboard or the mouse. The system is designed to be as user-friendly as possible, even for those with little or no computer experience. On-screen instructions are similar to those you would see in a paper examination booklet.

Before taking your exam, we strongly encourage you to go on a virtual tour of the testing center. To access this tour, click the What to Expect in a Pearson VUE test center at the following link: home.pearsonvue.com/test-taker/security.aspx

You also will receive a small, erasable whiteboard if you need one. You may not take your own calculator, if the exam calls for it. One will be provided on the testing screen. See example below.

On the Day of Your Exam

Important Reminders

On the day of your exam, remember to:

- dress comfortably: the computer will not mind that you’re wearing your favorite relaxation outfit
- arrive at the test site rested and prepared to concentrate for an extended period
- allow sufficient time to travel, park, and locate the test center
- be prepared for possible variations in temperature at the test center due to weather changes or energy conservation measures
• bring your ID, but otherwise, don’t weigh yourself down with belongings that will have to be kept in a locker during the test.

Academic Honesty Nondisclosure Statement

• All test takers must agree to the terms of the Excelsior College Academic Honesty Policy before taking an examination. The agreement will be presented on screen at the Pearson VUE Testing Center before the start of your exam.

• Once the test taker agrees to the terms of the Academic Honesty Nondisclosure Statement, the exam will begin.

If you choose not to accept the terms of the agreement

• your exam will be terminated

• you will be required to leave the testing center

• you will not be eligible for a refund. For more information, review the Student Policy Handbook at www.excelsior.edu/studentpolicyhandbook.

Student behavior is monitored during and after the exam. Electronic measures are used to monitor the security of test items and scan for illegal use of intellectual property. This monitoring includes surveillance of Internet chat rooms, websites, and other public forums.

Information About UExcel Exams for Colleges and Universities

A committee of teaching faculty and practicing professionals determines the learning outcomes to be tested on each exam. Excelsior College Center for Educational Measurement staff oversee the technical aspects of test construction in accordance with current professional standards. To promote fairness in testing, we take special care to ensure that the language used in the exams and related materials is consistent, professional, and user friendly. Editorial staff perform systematic quantitative and qualitative reviews to ensure accuracy, clarity, and compliance with conventions of bias-free language usage.

Excelsior College, the test developer, recommends granting three (3) semester hours of lower-level undergraduate credit to students who receive a letter grade of C or higher on this examination. The examination satisfies the Nursing Science core requirement in microbiology for the Excelsior College associate and baccalaureate degrees in nursing. Other colleges and universities also recognize this exam as a basis for granting credit or advanced standing. Individual institutions set their own policies for the amount of credit awarded and the minimum acceptable score.

Microbiology Exam Development Committee

I. Edward Alcamo, PhD
 (St. John’s University, Microbiology, 1971)
 Professor of Microbiology, State University of New York College of Technology at Farmingdale

Jean A. Douthwright, PhD
 (University of Rochester, Biophysics, 1980)
 Professor of Biology, Rochester Institute of Technology

Mark Gallo, PhD
 (Cornell University, Microbiology, 1991)
 Assistant Professor, Niagara University